
NASA Technical Memorandum 86829

8'

I

Adaptive Inverse Control for
Rotorcraft Vibration Reduction

Stephen A. Jacklin

October 1985

r

[NASA-TM-8682S) ADAPTIVE I_VEBSE CONTROL

_C_ _CTOBCRAF_ VI[SATICN _[U£_ICN Ph.D.

_}esis (NASA) 192 F CSCI 620

."_87- 14910

U,_clas

G3/u3 143576

---%

N/ A
National Aeronautics and
Space Administration



Jlt

_-,,r

i:_2 -



NASA Technical Memorandum 86829

Adaptive Inverse Control for
Rotorcraft Vibration Reduction
Stephen A. Jacklin, Ames Research Center, Moffett Field, California

October 1985

T ",v

==

IW A
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035



f
,",l

=

s

i4



ABSTRACT

This thesis extends the Least Mean Square (LMS) algorithm to solve the

mult!ple-input, multiple-output problem of alleviating N/Rev helicopter fuselage

rvibration by means of adaptive inverse control. A frequency domain locally linear

"model is used to represent the transfer matrix relating the higher harmonic pitch

control inputs to the harmonic vibration outputs to be controlled. By using

the inverse matrix as the controller gain matrix, an adaptive inverse regulator

is formed to alleviate the N/Rev vibration. The stability and rate of convergence

properties of the extended LMS algorithm are discussed. It is shown that the

stability ranges for the elements of the stability gain matrix are directly related

to the eigenvalues of the vibration signal information matrix for the learning

phase, but not for the control phase. The overall conclusion is that the LMS

adaptive inverse control method can form a robust vibration control system, but

will require some tuning of the input sensor gains, the stability gain matrix,

and the amount of control relaxation to be used. The learning curve of the

controller during the learning phase is shown to be quantitatively close to that

predicted by averaging the learning curves of the normal modes. For higher

order transfer matrices, a rough estimate of the inverse is needed to start the

algorithm efficiently. The simulation results indicate that the factor which most

influences LMS adaptive inverse control is the product of the control relaxation

and the the stability gain matrix. A Small stability gain matrix makes the

controller less sensitive to relaxation selection, and permits faster and more

stable vibration reduction, than by choosing the stability gain matrix large

and the control relaxation term small. It is shown that the best selections

of the stability gain matrix elements and the amount of control relaxation is

basically a compromise between slow, stable convergence and fast convergence

with increased possibility of unstable identification. In the simulation studies,

the LMS adaptive inverse control algorithm is shown to be capable of adapting

the inverse (controller) matrix to track changes in the flight conditions. The

algorithm converges quickly for moderate disturbances, while taking longer for

larger disturbances. Perfect knowledge of the inverse matrix is not required for

good control of the N/Rev vibration. However it is shown that measurement

noise will prevent the LMS adaptive inverse control technique from controlling

the vibration, unless the signal averaging method presented is incorporated into

the algorithm.
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I. INTRODUCTION

w _

This thesis presents an extension of the Least Mean Square (LMS) al-

gorithm to solve the multiple-input, multiple-output problem of alleviating

N/Rev helicopter fuselage vibration by means of adaptive inverse control.

The reduction or alleviation of helicopter N/Rev vibration will reduce main-

tenance requirements, while at the same time increase ride quality and helicop-

ter reliability. The solution presented in this paper uses the extended LMS

algorithm to estimate the local inverse "of the transfer matrix relating the

higher harmonic pitch control inputs to the harmonic vibration outputs to

be controlled. By using the inverse matrix as the controller gain matrix, an

adaptive inverse regulator is formed to alleviate the N/Rev vibration. The

contributions made in this thesis are first to extend the LMS algorithm of

Widrow and Hoff to solve the multiple-input, multiple-output helicopter vibra-

tion control problem, and second to formulate the helicopter vibration problem

in a manner suitable for solution by the LMS adaptive inverse control tech-

nique.

Prior to presenting the multiple-input, multiple-output LMS adaptive inverse

control algorithm extension, the nature of the helicopter vibration control problem,

will be explained. A literature review of previous work follows this introduction.

Though not intended to review previous work in an exhaustive fashion, work

relevant to the control of helicopter vibration by active blade pitch controls, and

work related to the development of the LMS algorithm are cited. A complete

description of the vibration control problem is then given in terms of inverse

modeling concepts and terminol%o-y related to modeling the helicopter as a linear

system in the frequency domain. Once the control problem nomenclature and



formulation are clearly delineated, the extended LMS algorithm is presented

and used to solve the vibration control problem. In the analysis section which

follows, the stability and rate of convergence properties are discussed. Here,

the effect of controller initial conditions and the choice of the stability gain

matrix elements play an important role in overall algorithm performance. It

will be shown that the stability ranges for the elements of the stability gain

matrix are directly related to the eigenvalues of the vibration signal information

matrix. Lastly, the results obtained from simulation will be presented for a variety
i

of cases, including the effects of measurement noise and changes in operating

conditions.

iU
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H. PREVIOUS WORK

This section presents a review of previous work. The review has been

divided into two sections. The first section reviews work related to the active

control of helicopter vibration using frequency domain models and inverse control

techniques. The second part presents the development of the LMS algorithm.

Though this review of previous work is not comprehensive, it will serve to acquaint
.i

the reader with most of the important contributions upon which this thesis

builds.

2.1

ACTIVE CONTROL OF HELICOPTER VIBRATION

USING FREQUENCY DOMAIN MODELS

In forward flight, asymmetrical airflow through the rotor disk of the

helicopter produces a fuselage vibration spectrum which tends to be dominated

by multiples of the N/Rev component (Johnson, 1980). Here, N denotes the

number of blades in the rotor. As viewed from the nonrotating or fuselage

reference frame, the N rotor blades produce N cycles of vibration per rotor

revolution. The vertical hub shears and blade stresses also have a similar periodic

nature.

Researchers in rotorcraft development recognized early on that the elimina-

tion of these periodic vibrations 3nd loads would be valuable in extending the

useful life of the helicopter and improve its ride quality. Hence, passive vibra-

tion control mechanisms have been engineered into the helicopter almost from

3



its inception (Gessow and Meyers, 1952). Though these passive devices enhance

vehicle operation, they typically have the disadvantages of adding to the gross

weight of the helicopter and increasing the profile drag power loss. In recent

years, advances in digital computation circuitry have offered the the option of

implementing computer-controlled, active vibration reduction methods. These

methods hold the potential for not only reducing the weight of the helicopter, but

also the capability to adaptively reduce the periodic rotor loads and vibrations at

their source.

Though it is difficult to say who was first in beginning the active vibration

control studies, McCloud and Kretz (1974, 1975) seem to have developed the

first linear, frequency domain model concept. In 1974 they examined the effects

of introducing higher harmonic control into the rotating system of the jet-flap

rotor. The jet-flap was excited at harmonics of 2, 3, 4, 5, 6, and 7 per Rev, and

the 2, 3, 4, 5, and 6 harmonics of blade stress and rotor loads were obtained.

The objective of the test was to see what effect higher harmonic blade pitch

had on the periodic nature of the rotor loads and blade stresses. With the

assistance of Jean N. Aubrun, a frequency domain model was developed to relate

the various harmonics of rotor loads and vibration to the higher harmonics of

jet-flap excitation. This model postulated that for a quasi-static wind tunnel

operating condition, the higher harmonic amplitudes of fuselage vibration and

rotor loads could be linearly related to the harmonics of jet-flap excitation.

The matrix relating these harmonics was calculated by an off-line weighted

least square error technique. This transfer matrix was termed the T matrix.

In later theoretical studies the optimal control was formed as a deterministic

function of the T matrix and sensed vibration. Further open-loop studies were

subsequently tested by McCloud and Weisbrich on the Multicyclic Controllable



Twist Rotor (MCTR). This rotor was similar to the jet-flap rotor in that

higher harmonic control was introduced directly into the rotating system. Again

a frequency domain transfer function or T matrix was identified by an off-

line least square error technique. The optimal open-loop deterministic control

was calculated off-line using the test data, but not directly applied to the

rotor.

The next key development in higher harmonic vibration control was to

introduce the higher harmonic controls directly into the rotating system by

means of swashplate oscillation. In 1974, Sissingh and Donham conducted a

test in which the swashplate was oscillated at higher harmonic frequencies.

They then identified transfer matrices relating higher harmonics of cyclic pitch

to the higher harmonics of vibratory hub moment and vertical shears with

an off-line least square error technique. Using sensed vibration data and the

inverse of the T matrix, a control law was computed and applied to the

rotor.

=

l

In the years that followed, several other experimenters closed the loop

with respect to sensed vibration, and various versions of inverse control were

presented. In 1978, Powers studied the harmonic response of hub forces to

harmonic swashplate oscillation. The loop was closed only with respect to

the operator, who calculated the _ontrol off-line, using direct inversion of

the T matrix. In 1980, Shaw and Albion tested a fully close:l-loop version

of the inverse control scheme. The control used was swashplate oscillation

at N/Rev and the sensed feedback parameters were the third, fourth, and

fifth harmonics of root flapwise bending. The transfer matrix was computed

by an off-line least squares method and inverted. This inverse matrix was

then used as a fixed-gain controller matrix, since it effectively described the



relationship between the swashplate oscillation inputs, and the flapwise bending

outputs. This method of inverse control worked well at one speed, but

not at others, because at other flight conditions the control authority was

exceeded, or perhaps because the transfer function was no longer valid at the

new control point. In any event, it seemed that on-line identification and

variable control authority would be required to make the inverse control method

viable.

Itowever, rather than pursuing these issues, the majority of researchers

have since studied stochastic methods to identify and track the transfer matrix,

and LQG theory to compute the control as either deterministic or stochas-

tic functions of the transfer matrix and the measured or identified vibra-

tion. The interested reader is referred to optimal control texts such as Bryson

and tIo, Goodwin and Payne, or Sage and Melsa to gain an appreciation of

these modern estimation and control techniques. Johnson (1982), hovJever,

provides an excellent analysis of these state of the art identification and con-

trol techniques in the context of the helicopter vibration control problem.

Davis (1983) presents a computer simulation of these methodologies includ-

ing the Kalman Filter approach of Taylor, Farrar, and Mio (1980) and the

cautious and dual control approaches as given by Molusis, Hammond, and Cline

(1981).

Though some of these concepts appear very promising, the com_'.exity

of their:im_plementation encourages efforts to find a simpler approach, if

possible. The LMS algorithm of Widrow and Hoff was studied and ex-

tended in an effort to find such a simpler approach. Inverse cont_rol is

simple to implement, but only effective if good knowledge of the Iccal trans-

fer matrix inverse is available. The LMS algorithm may serve as a means

6
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of providing this knowledge, in a computationally fast and efficient man-

ner.

2.2

DEVELOPMENT OF THE LMS ALGORITHM

The Least Mean Square (LMS) algorithm of Widrow and ttoff was ini-

tially designed to tune or adjust filters. In these studies, Widrow con-

sidered filters to be broadly defined as any device or system that processed

incoming signals or other data in such a way as to eliminate noise, smooth

the signals, or identify each signal as belonging to a class, or predict the

next input signal from moment to moment (Widrow 1970). The early

development of the LMS algorithm was focused on electrical engineering

problems.

Widrow and his colleagues derived the LMS algorithm for single-input, single-

output systems (Widrow 1960). The typical plant model considered a single input

signal, which was delayed several times. After each delay, the signal was sent

to the next delay, and also to a summer node after having been multiplied by

a gain. All the signals were summed together to form a single output. The

optimization problem was to find the value of the gains and/or delays which

would tune the filter in some optimal sense. This type of model had many useful

applications.

In 1967, Widrow, Mantey, Griffiths, and Goode prQposed to optimally tune



antenna sensitivity using the LMS algorithm. In this case the tapped delay

line model was used to represent a single signal source received by an array

of antennas. Due to the configuration of the antennas in space, each antenna

would receive the signal with a slightly different transmission delay time. It was

postulated that the signals from different antennas could be optimally delayed

such that when added together they would produce a maximum signal output.

In this problem, the LMS algorithm was used to identify a vector of signal delay

times.

A similar method was proposed to identify signals in the presence of

interfering noise sources. As in the previous example, the concept involved

optimally delaying the signals from several sensors, and adding them together

to achieve the desired result. One application was a fetal heart monitor

(Widrow 1975), in which the purpose was to track the fetal heart EKG in

the presense of the mother's EKG, an interfering noise source. Microphones

were placed in an array on the mother's abdomen. Since the microphones

were located at varying distances from the mother and fetal hearts, it was

postulated that by delaying the signal from each microphone by just the right

amount, it would be possible to amplify the fetal heart EKG, while attenuating

the mother's EKG at the same time. The model used to represent the filter

was a tapped delay line, as in the previous example. The LMS algorithm

was again used to tune the filter, by finding the optimal vector of time

delays.

In 1979, Widrow, McCool, and Medoff proposed using the LMS al-

gorithm for the purposes of adaptive inverse identification. They proposed

that if a plant inverse were known, a servo device could be made to fol-

low an input command signal. No modeling or simulation of a multiple-



L_

input, multiple-output plant was presented in the paper. The model

used in the paper was again the tapped delay line model, indicating that

the present work concerned the single-input, single-output case. An al-

lusion to adaptive inverse control of multiple-input, multiple-output sys-

tems was made, but with no examples, target applications, or models

referenced.

The next section presents the helicopter vibration control problem as a

multiple-input, multiple-output adaptive inverse control application problem.

9



Ill. INVERSE CONTROL OF HELICOPTER VIBRATION

The multiple-input, multiple-output control problem presented here in-

volves determining the higher harmonic blade pitch motions to reduce the

N/Rev fuselage vibration. In order to use active controls to reduce vibra-

tion, a model is needed to mathematically state how the input higher harmonic

blade pitch is related to the measured harmonics of fuselage vibration. The

formuIation of such a model based on the helicopter structural motion con-

straints and aerodynamic Ioadings is, at present, an intractable problem. It

is therefore necessary to identify the elements of an assumed model from the

higher harmonic pitch inputs and vibration outputs. In this section, the con-

cept of inverse active control will be presented, which will serve to define the

vibration control problem at hand, as well as explain the nomenclature used

herein.

3.1

HIGHER HARMONIC BLADE PITCH CONTROL

The control proposed to reduce fuselage vibration is termed higher harmonic

or multicyclic blade pitch oscillation. As the names imply, the blade pitch

is forced or oscillated at multiples of the rotor rotational frequency. It is

convenient to express the blade pitch motion as a Fourier series expansion as

follows:

10
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e -- O0 nt- OxcCos(O) + 01sSin(gl) + 02cCos(2ql) + 02sSin(2g2)

'where,

and,

q-O3C Cos(3g2) + O3s Sin(3g2) + 04c Cos(4g2) -Jr-04s Sin(4g2) nt- ...

O0

O1C

O1S --"

Collective Cyclic Pitch

Lateral Cyclic Pitch

Longitudinal Cyclic Pitch

02C --

02S "--

03C --

03S --

84C "--

04S --

05C --

05S

The Higher Harmonics

Cyclic Blade Pitch

of

The first three coefficients specify the primary controls which are used

to trim the helicopter to a desired flight attit ade. The remaining coefficients

are the higher harmonic terms, and are potentially available to control vibra-

tion.

The blade pitch control is considered to be implemented from actuators

located in the nonrotating system. (It is possible to introduce blade Ntch

control from the rotating system, as well.) The control is transferred from

the nonrotating system to the rotating system by means of the swashplate.

11



The swashplate is basically a pair of annular plates, positioned around the

rotor shaft. While the lower swashplate is stationary, and attached to the

fixed system actuators, the upper swashplate rotates with the rotor, and is

attached to the blade pitch control rods. Differential control of rotor blade

pitch is obtained by tilting the swashplate. For helicopter trim control, the

swashplate tilt is held quasi-steady. Higher harmonic control is implemented by

oscillating the swashplate tilt in a sinusoidal fashion, relative to the reference blade

angle.

Because the higher harmonic control is of different frequency and amplitude

than the trim controls, separate actuation systems are typically required. Figures

1 and 2 are presented to give the reader some insight as to how the higher

harmonic motion used to alleviate vibration may be mechanically superimposed

on the primary controls used to trim the helicopter. In figure 1, the higher

harmonic actuators move the pivot point of the bell crank of the trim control

actuator linkage. An in-line actuator arrangement is also possible, as shown in

figure 2. Note that in both cases, the actuators are in the fixed system and

move the stationary swashplate. The rotating swashplate follows the stationary

swashplate and introduces cyclic blade pitch proportional to the swashplate

position.

12
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Figure I. rlechanical Superposition of Trim and Higher Harmonic (Multicyclic)
Pitch Controls; Bell Crank Arrangement

Figure 2. Mechanical Superposition of Trim and Higher Harmonic (Multicyclic)
Pitch Controls; In-Line Actuator Arrangement
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The control problem is to determine the phase and amplitude of cyclic

pitch (swashplate) oscillation at N/Rev necessary to reduce fuselage vibration

at N/Rev. Although other alternatives are possible, oscillation at N/Rev

has the advantage of keeping all the blades "in track". That is, if the

pitch of an N-bladed rotor is oscillated at N/Rev, then every blade will

experience the same aerodynamic loading going around the azimuth. This is

desirable, as it tends to aerodynamically balance the rotor (McCloud and Biggers

1978).

Higher harmonic pitch oscillation at N/Rev in the fixed system al-

lows for six control degrees of freedom. Figure 3 defines the angle

qJ made by the reference blade and the tail of the helicopter. With

respect to this reference, the magnitude and phase of collective, lateral,

and longitudinal cyclic pitch motion at N/Rev frequency may be specified.

These degrees of freedom are also shown in figure 3. However, in-

stead of presenting the components as magnitude and phase, the rela-

tion,

ACos(N¢: + ¢) = C1Coz(N_) + C2Sin(N_P)

will be used to form an expression using sine and cosine coefficients. Hence the

control vector, O, consists of the sine and cosine Fourier coemcients of collective,

lateral, and longitudinal higher harmonic motion at N/Rev,

14
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8C,Lo.

8S,Lor_

SO,Col

0 = 8S,Co!

8C,Lat

8S,Lat

and will always be a (6xl) vector.

Longitudinal, Cosine

Longitudinal, Sine

Collective, Cosine

Collective, Sine

Lateral, Cosine

Lateral, Sine

Swashplate

Actuators

A, B, & C 270"

4/Rev Collective

Phase O"

180"

90"

Tall
End

O" 90" 180" 270" 360"

C

4/Rev Lateral

Phase O" c I 1 i

A

4/Rev Longitudinal B

Phase O"
C

i ', i
I * I
I , I

Figure 3: Example of N/Rev Collective, Lateral, and Longitudinal Pitch

Controls for N=4.
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3.2

MEASURED N/REV VIBRATION

The measured vibration vector, Z, represents the quantity to be minimized. It

is formed by processing signals from accelerometers placed at various locations on

the fuselage. By orienting the accelerometers in different spatial directions, vibra-

tion forces on all three axes may be sensed. The signal from each accelerometer

may be represented as a Fourier series, using _ne rotor revolution as the fundamen-

tal period, as,

Z-- Z0 -_- zlcCos(_)-_- zlsSin(_)--[- z2cCo_(201)--[- z2sSin(2tP) + z3cCos(3_)

zasSin(3qJ) + z4cCos(4q) + z4sSin(4#) + zscCos(5¢2) + zssSin(5k_)...

If the vibration signal from the accelerometers is processed by a Fast Fourier

Transform (FFT) algorithm, the N/Rev coefficients may be used to form the

vibration vector. The vibration measurement vector will therefore be defined as a

(2n x 1) vector whose elements are the N/Rev Fourier sine and cosine coefficients

of the "n" accelerometers (figure 4).

The dimension of the vibration vector is thus proportional to the number of

accelerometers used. Since only six controls have been proposed, it is obvious

that good control of the (2n x 1) Z vector can only be attained by restricting

n. The choice of n is a compromise between good vibration control at a few

areas, or less vibration control at more areas. The number of locations in which

vibration may be controlled well is dependent upon the structural constraints

imposed by the fuselage between the accelerometers. If no constraints existed

16
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among the selected accelerometer locations, it would be possible to control

the magnitude and phase of at most three accelerometers, with the (6 x 1)

control vector. Control at a greater number of locations is possible depending

upon the fuselage constraints. With three appropriately placed _ccelerometers,

it may be possible to alleviate the N/.Rev vibration throughout the entire

fuselage.

el

Accelerometer

Signals

Z

0

Figure 4: Formation of the (2n x I) Vibration Measurement Vector from

"n" Accelerometers on the Helicopter Fuselage
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3.3

INVERSE VIBRATION CONTROL USING

LINEAR FREQUENCY DOMAIN MODELS

The higher harmonic fuselage vibration can be thought of as aris-

ing from two sources: 1) the aerodynamic interaction of the rotating

N blades with the airflow, and, 2) the N/Rev cyclic pitch control in-

put. The objective is to use the latter to cancel the former. To do

so requires a mathematical model of the relationship between the higher

harmonics of sensed vibration and the higher harmonics of pitch con-

trol.

Vibration control by inverse modeling requires that this relationship be
r

linear. Linear models _hich describe the system may be of the global

type,

Z(k)--[TlO(k) q- Zo

where the vibration harmonics, Z, are linearly related to the pitch har-

monics, O, about the vibration level Z0 where e equals zero. Itowever,

for adaptive inverse control, it is more useful to use a local model of the

form,

zxz(k)= [TlaO(k)

where,

az(k) = z(k)- z(k- 1)

ae(k) = o(k)- o(k- 1)

18



in which small changes in the N/Rev coefficients of vibration, AZ, are linearly

related to small changes in the N/Rev coefficients of cyclic pitch, AO, about

a local control point. Here AZ(k) is a column vector whose elements represent

the difference in the sine and cosine Fourier coefficients between two successive

steps. Similarly, AO(k) is a column vector whose elements represent the difference

in the N/Rev sine and cosine Fourier coefficients from one step to the next.

T is the postulated transfer matrix which relates the changes in the higher

harmQnics of vibration to the changes in the higher harmonics of cyclic pitch

control.

The idea behind adaptive inverse control is to make the controller

matrix be the local inverse of the helicopter (plant) transfer function.

The inverse control feedback loop may be modeled as in figure 5, where

C denotes the inverse of the helicopter transfer matrix, T. From this

figure, it is seen that the total sensed vibration level, Z, is fed into

the inverse controller matrix. This is done to generate a corresponding

change in the higher harmonic pitch to alleviate the total sensed vibration.

AO* -- --[ClZmeasure_ (I)

Or_

The change in higher harmonic pitch necessary to alleviate the sensed vibration

is produced by simply changing the sign on the sensed vibration. Notc that the

Ae* vector has an asterisk superscript to distinguish it as a commanded change

in higher harmonic pitch based on an imperfect estimate of the inverse matrix,

C.

19



This approach has been used by previous researchers to implement in-

verse control by inverting a transfer matrix identified at a particular flight

condition. However, the T matrix identified at one flight condition is

generally not representative of the T matrix identified at another flight con-

dition. As a result, good control may be achieved at one flight condi-

tion, but not _t others. Because the T matrix is apparently not constant

throughout the flight envelope, it is necessary to identify the local inverse

transfer matrix adaptively. Adaptive inverse control, as presented here, thus

refers to identifying the locally linear inverse at the current operating condi-

tions. In the next section, the extension of the LMS algorithm to handle the

problem of adaptively identifying the local inverse transfer matrix will be dis-

cussed.

e(j- 1)

° , £(n × m) ! ,',e - e(j)

CONTROLLER J (n X 1) "-_ 'k,,.._ (n X 1) _

COPY

T

(m X n)
HELICOPTER

PLANT

AZ

(reX 1)

Z

(_ ZFLIGHT

(m X 1)

Figure 5: An Inverse Controller, Where C is the Inverse of T.
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IV. LMS ADAPTIVE INVERSE CONTROL OF HELICOPTER NIREV VIBRATION

As mentioned previously, it is necessary to adaptively identify the local

helicopter transfer function inverse in order for inverse control to work in all flight

regimes. In this section, the LMS algorithm is extended to the multiple-input,

multiple-output form and applied to the helicopter vibration control problem. The

convergence and stability analysis of this formulation will be discussed in the next

section.

4.1

FORMATION OF LMS ADAPTIVE INVERSE

IDENTIFICATION ERROR VECTOR

The LMS algorithm has been extended to exploit the differences between

the actual and estimated changes in the higher harmonic blade pitch FFT

N/Rev coefficients. The estimated change in higher harmonic pitch is com-

puted using the inverse estimate as in equation 1. Hence, these differences

may be used to form an error vector which can be used to adaptively iden-

tify the inverse transfer matrix. The error vector formation is shown in

figure 6. Note that the controller has been placed downstream of the plant

for the express purpose of forming this error vector. Referring to figure

6,

21



Adaptation Error Vector -- AO-- AO*

e= _e- [Cl_Z

e = he- [C][T]_,e

Here AO is the change in N/Rev blade pitch, which produces a corresponding

change in vibration, AZ. When this AZ is multiplied by the controller matrix,

C, the change in blade pitch would be reproduced exactly, if C were the exact in-

verse of T. However, this calculated change in pitch is usually not quite the same

as the original change in blade pitch due to identification errors in the inverse

matrix, C.

A8 "_

(n x I)

DELAY

T

(m X n)

HELICOPTER

PLANT

(nX I)

/% • +

I
F LMS-SD -_ (nX 11

'I_ c
AZ (n X m)

(rnX 1) CONTROLLER (nX 1}

Figure 6: Formation of the Adaptation Error Vector Used by the

Extended LMS Algorithm to Identify and TPack the Inverse

Matrix, C.
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4.2

TRACIGNG THE INVERSE ESTIMATE

WITH T]tE EXTENDED LMS ALGORITHM

_ : i-___:

i --

The extended LMS algorithm is an iterative technique which uses

the method of steepest descent to update the estimate of the inverse

plant transfer function. The form of the equations presented here basi-

cally follows and extends the single-input, single-output LMS algorithm

work of Widrow and ttoff. The stability gain term has been made

into a diagonal matrix, as has the gradient, in order to extend the

LMS algorithm to solve the multiple-input, multiple-output vibration control

problem.

The extended LMS algorithm identifies and tracks the local inverse tran'sfer

function by making corrections to the inverse estimate which are proportional

to the gradient of the error vector squared, with respect to the inverse matrix

elements. In steepest descent form, the equation for updating the estimate of the

inverse may be written as:

C(k -}- 1)-- C(k)- Ks( i)e2 )
oc(k) (2)

To understand the form of the equation, it is helpful to think about correcting

only one value of the inverse matrix. If the square of the error of element Cij

is plotted as a function of the Cij estimate, a plot such as that shown in figure

7 may be made. For this case, the gradient has degenerated to the slope of the

error squared line. It is seen that for two successive estimates of Ci,y, that if

the square error increases with increases in Ci, j, then the update to correct the

23



estimate must be negative. This is why the correction term is preceded by a minus

sign in equation 2. K8 is a gain term which governs the amount of correction

to be made. If Ks is made too large, convergence to the minimum may not

Occur.

Identification

Error

in

C,-

ij

(k+l)

........ Error(k)

A
hl

-%

(correction k+2)
7-- lW '' r

Cij

Figure 7 : Steepest Descent Approach for Estimation of only one

parameter, Cij
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The extension of the LMS algorithm to the n dimensional case is made by

finding an estimate of the error vector squared with respect to the current value

of the inverse estimate. An estimate is needed for the gradient of the square error,

or s

0e 2

oc(_)
where the error vector squared has been defined as

By defining the error vector in this fashion, an error is associated with each row

of the inverse estimate, ttence for each row i of the inverse C matrix, the square

error may be expressed as,

=

e_=(ae_- cTazr)(ae_- ,_zc_)

where ei is

verse matrix,

scalar.

_=(Ae_Ae_-ae_Azc_-cTAzrae_+cr_ Azr,_zc_) (3)

the scalar error term associated with the i th row of the in-

C T. Note that AZ T is a column vector, and that Aei is a

An approximation of the gradient of the error squared for the i _h row may

then be found by differentiating the i th error squared (equation 3) with respect to

the i th row of the C matrix, C T, as follows:

Oe2 = --AZT AOi -- AZT Aei -}- AZT AZCi Jr- AzT Azci
oct

-- _2AZT Aei + 2AZT AZCi

25



and thus,

--2AZT(AOi -- AZCi)

oct = --2AZ(Ae,-- CTaZr) (4)
This expression is used by the extended LMS algorithm as an estimate of the

gradient of the square error for the i _h row of the inverse matrix. It is an

approximation because it does not account for measurement errors in Z, or

identification errors in C.

Using the row error squared gradient estimate provided by Equation 4, in

the steepest descent equation 2, the extended LMS inverse update equation is

formed:

cT(k + 1)= cT(k) + 2k_AZ(k)(Ae_(k)--CT(k)AZr(k)) (5)

It is this equation that adaptively identifies and tracks the estimate of the

inverse matrix. It has been presented in a row by row fashion to assist the

reader in seeing that it applies to square and nonsquare plant transfer matrices

alike.
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4.3

ADAPTIVE INVERSE CONTROL OF HELICOPTER VIBRATION

When the controller update equation (5) is combined with the inverse

control law (1), the adaptive inverse control scheme is realized. These

two relations form the estimator and controller of the adaptive inverse

reguJator:

c[(k+ = cT(k)+

as the inverse estimate update equation, and

O(k -_- 1) -- O(k) -_- AO*

or,

O(k -[- 1)-- e(k)- KcaC(k)Zmeasured

for the inverse control law. Here, KCR is a gain chosen betxTeen zero and one. It is

termed the controlrelazation constant, and is useful in modifying the convergence

characteristics of the extended LMS algorithm.

These feedback loops are shown in figure 8. Note that the inverse matrix,

C, has been shown in two places for conceptual purposes. In the top loop,

the C (inverse) matrix has been placed downstream of the T tramcfer matrix

(helicopter) for the purpose of generating the extended LMS error vector.

The L_MS- SD box represents the extended LMS estimator, which uses

the error vector information to track and identify the inverse matrix, C.

The bottom loop shows another C matrix placed upstream of the helicopter

27



to serve as the controller matrix for the inverse control law. In actual

implementation, though, only one inverse (C) matrix would be held in computer

memory.

DELAY

C

(n × m)
CONTROLLER

COPY

e(i-1)+_,
"-M

AO
r

(nX 1)

T

(m X n)
HELICOPTER

PLANT

T

(m X n)

HELICOPTER
PLANT

AZ

(m X 1)

Ae

(n X1)

r-t
I
I

AZ
r

(mX 1)

LMS- SD

-I

_ (nX1) _'

c I^A8
(n X m)

CONTROLLER (nXl)

Zmul ,._ _ ZFLIGHT

(m X 1) '_/ (m X 1)

Figure 8 : Adaptive Inverse Regulat6r, Combining Extended LMS
Estimator with the Inverse Control Law.
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From figure 8,_tlle adaptive inverse control technique =sequence of events

can be seen. First, a change in the higher harmonic pitch vector, A® is fed

into the helicopter. This should produce a change in the measured vibration

vector, AZ. If this change in N/Rev vibration is postmultiplied into the inverse

estimate matrix, the original change in higher harmonic pitch should be produced,

provided C is the inverse of T, in the least squares sense. The original (A®)

and calculated (AO*) higher harmonic pitch commands are compared, and the

error vector for the extended LMS algorithm is generated. The extended LMS

algorithm is then applied to update the estimate of the inverse matrix. After

the updated inverse estimate is obtained, the total sensed vibration vector,

Zrneasured, is postmultiplied into the inverse estimate. This should then form

the negative of the change in higher harmonic pitch necessary to alleviate the

measured vibration. The new control is applied to the rotor, and the cycl e

repeated.

The question of how the adaptive inverse control technique should be started

will be addressed in the next section, after some analysis of the method has been

presented.
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V. ANALYSIS OF ADAPTIVE INVERSE CONTROL

Analysis of the adaptive inverse control technique is centered on the

identification characteristics of the extended LMS algorithm. The reason for this

is that if convergence to the inverse can be achieved, then the inverse control

law (by definition) will reduce the vibration, providing the control authority is

not exceeded. Hence, aside from selecting the amount of control relaxation, the

extended LMS algorithm convergence characteristics are governed by the selec-

tion of Ks. It is shown that the stability ranges for the elements of K8 are, in

part, determined by the eigenvalues of the signal information matrix. The eigen-

values qf the signal information matrix will, in turn, be related to the dynamics

of the helicopter. Lastly, the learning characteristics of the algorithm are dis-

cussed as functions of the starting estimate of the inverse, and the elements of

Ks.
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5.1

CONDITIONS FOR CONVERGENCE TO THE INVERSE

The analysis of the multiple-input, multiple-output adaptive inverse control

technique presented here involves determining the stability properties of the ex-

tended LMS estimator. In this section, considerations governing the selection of

the.Ks elements will be discussed. The learning properties associated with the

extended LMS algorithm convergence characteristics will be discussed in the next

section.

= =

|

Analysis of the stability properties of the extended LMS estimator

proceeds with the contro]!er update equation for the i *h row of the controller

matrix:
s

c_r(k+ _)= c_r(k)+ 2(k_)z,z(,_e_- c_r(k)+.xzr)

Recalling that

cT(z)Az r = (rov,)(co0= scalar,

the above equation may be written as,

I
=

I

cT(k+ 1)= c_r(k)+ 2(k_)azz,e_- 2(k_)C_r(k),_Zr,_z

Then taking the expected value of both sides,

E[C[(k + 1)] = E[cT(k)] + 2(k{)E[AZAe{]- 2(k{)E[CT(k)]E[,_Z T AZ]

Defining

E[AZAOi]- S:,o
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and,

E[aZ v az] = S.,.

the equation may be rewritten as

E[CT(k + 1)] -- E[C_(k)]-_- 2(ki)Sz) -- 2(ki)E[CT(k)]Sz,z

Or,

E[C_(k -4- 1)1- E[C_(k)][I-- Sz,z2ki]-t- 2kiSz, o

From this equation it can be seen that as lbng as the eigenvalues of

[I- Sz,z2ki]

are less than 1, the algorithm is stable. Alternatively, it is possible to decompose

the signal information matrix into modal form by letting

Sz,z -- R -1 M?

where R is a matrix whose columns are the eigenvectors of Sz,z, and

h is a diagonal matrix, whose elements are the eigenvalues of the Sz,z

matrix.

ttence for stable convergence, it is necessary to select the elements of the

stability gain matrix, ki, so that the eigenvalues of,

[I--Sz,z2ki] are < 1

Thus, the stability range for the I(s gain elements are

1
O<ki<
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_vhere),rna_ is the largest eigenvalue of the signal information matrix.

The signal information matrix is almost a diagonal matrix, sothe upper limit

specified by __l_x,_may be replaced by roughly signal_powerl of the largest mean

signal of the measurement vector.

In the simulations, the effect of varying Ks is studied. Values of Ks

near _ will adapt rapidly, but will be more prone to tracking random

noise after "convergence" has been achieved, and will tend to oscillate about

the correct solution. A good value of Ks is one which results in con-

vergence at a sufficiently rapid rate, yet does not track noise signals too

closely.

The stability bound on Ks predicted by _ is really not a known

quantity, since the signal information matrix is, in general, not known.

From

E[AZ T AZ] -- E[(TAO)T(TAe)]

it is seen that the signal information matrix depends upon the local trans-

fer matrix, T, as well as the applied multicyclic pitch control, A®, and

any control relaxation used. :Hence, the actual values for the I(s ele-

ments which allow for sufficiently fast and stable inverse identification must

be found with some trial and error. The (6 x 6) simulation results

will make this point clear, when the effects of control relaxation are ex-

amined.
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5.2

CONVERGENCE PROPERTIES OF THE EXTENDED LMS ESTLMATOR

In the preceding section, the values of Ks which lead to stable con-

vergence to an inverse estimate were found. In this section more is said

about the solution to which the algorithm converges, and how fast it does

so. By analyzing the controller update equation in modal form, it is

possible to describe the convergence process in terms of learning curve

modes, as that done for single-input, single-output systems by Widrow

(1970).

:Recall from the last section that for row i of the inverse update equatiou

that

E[C_(k -_- 1)]-- E[CT(k)][I - Sz,z2ki]-_ 2kiSz, e

To study the convergence and learning properties, it is necessary to express' the

effect of initial conditions on the inverse, as well as the value of the stability

gain matrix, Ks. Letting C(0) denote the initial estimate of the inverse,

and

A--- [I-- Sz,z2t_]

B _ 2kiSz,_

Then,

E[C_r(1)l= E[CT(0)][A]+ B

E[cT(2)] -- E[cT(1)I[A] + B

E[cT(3)] = E[cT(2)][A] + B

E[cT(_ + 1)]= E[C_r(n)][A]+ B
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And by substitution, a relationship between the initial inverse estimate, the

stability gain matrix, and convergence may be derived.

E[C_'(3)] -- (E[CT(1)][A] -l- B)[A] @ B

E[C_(3)] = ((C/T(0)[A] q- B) @ B)[A] -I- B

E[C_(3)] = (C_(0)[A] 2 -t- BA "b B)[A] -q- B

E[CiT(3)] = C/T(0)[A] :3 + B[A] 2 + B[A] + B
2

E[cT(3)]= cT(o)[A]3+ _ B[A]"
r*'--0

Or, generalizing this expression,

k

Z[C_(k + 1)]-- C_'(0)[A] k-I-1 --{- _ B[A]"
_0

And resubstituting for A and B,

E[CT(k+ a)]= Cr(o)[I-- s.,.2kd_+ 1+ 2k_s_,0[I- s_,_k_]" (6)
n_0

The assumption is now made that the Ks elements have been selected small

enough so that the diagonal elements of the [I- Sz,z2k¢] matrix are all less

than one. Then as j approaches infinity, the first term of equation 6 will go to

zero.

To see that the second term will converge, in the limit, to the same

estimate as that found by the least square error method, it is neces-

oary to place the second term in modal form. This is done by let-

ting

Sz,z "- R -1AR

35



where R is a matrix whose columns are the eigenvectors of Sz,z, and h is a diagonal

matrix, whose elements are the eigenvalues of the Sz,z matrix. Rewriting the

second term of equation 6 with this nomenclature, and recalling that the first

term went to zero,

k

E[CTi (k -1- 1)] -- y_ 2ki Sz,o [I -- R -1AR]'*
r*---O

and thus for each row,

k

= 2k__ s.,0 [I'- n -1 _]"
_=0

k

E[CT(k+ 1)]= 2k_n-' _ (1- 2k_×_)"ns.,o
_0

• 1

2kiR--l(1 (1 -- 2ki),i)
)RSz,o

-- 2kiR--l(_)RSz,o

-- R--I A -I RSz,o

-- S--* Sz,oZ,Z

-- E[AZ T AZ] -1 E[AZAO;]

which is the same as that found by ordinary least squares, because if

AOi -- cT Az T
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where C_T is the i th row of the inverse matrix, then

and,

-- -- 2A Oi A ZT "t- 2AZ AZT Gi

Setting the partial derivative equal to zero, the normal equations,

AeiAz T = AZAZTC{

are found, and hence,

Ci -- [AzAzT] -_ AeiAZ T

Taking expectations,

E[Ci] -- E[AZ T AZ] -1 E[AZAOi]

which is in exact agreement with the expected estimate of the extended LMS

steepest descent approach. Hence, the extended LMS algorithm converges to the

correct estimate of the inverse in the least squares sense.

The modal analysis also permits the rate of convergence to be ex-

pressed in terms of normal modes. That is, for an n dimensional matrix,
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n geometric modes may be associated with the eigenvalues of the signal in-

formation matrix Sz,z. Letting Pi denote the geometric ratio of the i t'h

mode,

Pi ---- (1 nu 2ki),i)

and assuming an exponential decay, it is possible to associate an adaptation or

learning curve time constant, Vi, with this mode. Hence,

--1
Pi "- exp-

r_

or

1 1

And equating these two expressions, an approximate learning curve time constant

for the i th mode may be expressed as

1
ri--

2kihi

The exponential decay associated with this adaptation time constant is designated

as the "learning curve" for the i th normal mode. If all eigenvalues of Sz,z

were the same, a single learning curve could be defined for the entire inverse

matrix. In the more general case, however, the eigenvalues will not be

equal. Then the overall learning curve will be a function of all of the

eigenvalues corresponding to the various normal modes. It is expected that

the faster modes will therefore produce rapid initial learning, whereas the

slower modes will govern final convergence, since they will take longer to die

out.
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5.3

STARTING ADAPTI_ INVERSE CONTROL

A method for iteratively correcting the estimate of the helicopter inverse

transfer matrix has been presented without regard as to how the algorithm should

be started. That is, the initial conditions on the inverse matrix need to be

specified.

The effect of the initial estimate of the C/T(0) matrix was seen to be negligible

as the number of iterations approached infinity, since the first term in equation

6,

CT(O)[/-- Sz,zo2g,] "i+1

approached zero in the limit. However, the choice of the intial C(0) matrix is

important if the transient behavior is to be considered.

One method of selecting a starting estimate for the inverse would be to

apply an off-line least square estimation algorithm to some input and out-

put data taken near the expected mean operating condition. The identified

matrix could then be used as the initial estimate for the C(0) matrix. This

approach, however, has the significant drawback that each helicopter has a

slightly different flight regime, which requires a different starting estimate.

Futhermore, it would make a difference whether the vibration control algorithm

was started on the ground, in hover, or in a variety of forward flight condi-

tions.

A more comprehensive method, although more complex to implement, in-

volves determining the starting estimate during initial flight. In this ap-
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proach, an initial identification phase, termed the learning phase, would

be used to identify the starting inverse estimate in an open-loop fashion.

During the learning phase, the blade pitch could be given small perturba-

tions in higher harmonic pitch, and the corresponding small changes in vibra-

tion could be sensed. These measurements could then be used by the ex-

tended LMS adaptive inverse control algorithm to correct an initial coarse

estimate of the inverse matrix, obtained from some off-line technique. No

vibration control commands would be generated during the learning phase,

to avoid large transients in control re_ulting from a poorly identified in-

verse.

The learning phase would be terminated and the closed-loop operation begun

when the inverse estimate was then "close enough" for adaptive inverse control.

This end point would be established when the sum of the sqnares of the adaptation

errors, AOi -- AO_, were deemed small enough. At this point, the learning

signal would be discontinued, and the adaptive inverse control loop would be

closed. The LMS algorithm would then update the estimate of the helicopter

inverse transfer matrix to keep up with changes in the helicopter operating

environment.
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VL DISCUSSION OF SIMULATION RESULTS

i

In order to explore and test the extended LMS adaptive inverse control

method, two basic types of simulation studies were performed. The first study

used a (3 x 3) matrix to represent the helicopter transfer function, whereas

the second simulation runs used a (6 x 6) matrix. The (3 x 3) matrix was

useful, in that, the low order matrix made it easy to examine the convergence

properties of the extended LMS algorithm. The (6 x 6) matrix, on the other

hand, was useful in simulating more realistic control effects such as scaling

and noise rejection capability. Although both simulations involved square plant

transfer matrices, this is not a requirement of the algorithm, since identification

of the inverse transfer matrix is done in a row by row fashion. Square

matrices were selected only because they facilitated calculation of the true

inverse.

The simulation studies model the harmonic vibration-pitch dynamics as a

linear relationship:

Z = [T]O + Z0

_vhere Z is the vector of N/Rev vibration Fourier coefficients, O is the vec-

tor of the Fourier coefficients of cyclic pitch control, and Zo represents the

vector of the uncontrolled vibration coefficients. The values for the (3 x 3)

T matrix were selected so that the matrix would be symmetric and well con-

ditioned. This was done to avoid mixing the extended LMS algorithm con-

vergence characteristics with those characteristics associated with a transfer
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matrix having bad numerical properties.

m

2.0

The transfer matrix was represented

w

1.0 0.0

1.0 3.0 1.0

0.0 1.0 2.0

and .the uncontrolled vibration harmonics were constant,

B

1.0

2'0 -- 1.0

1.0

The matrix used to represent the (6 x 6) transfer matrix will be presented later.

The (3 x 3) simulation runs were divided into two phases. In the first phase, the

LMS inverse identification, starting from an initial estimate, was accomplished by

introducing perturbations in the cyclic pitch vector, and measuring the associated

changes in the uncontrolled vibration harmonics. This phase of the adaptive in-

verse control scheme w_0.s referred to as the Learning Phase, to distinguish it

from the Control Phase which began when the inverse control loop v:as closed.

The (6 x 6) simulation runs, however, studied only the control phase, beginning

with some initial estimate of the inverse. This was done to avoid duplicating

learning phase results seen in the (3 x 3) simulation, and also to permit a more

thorough investigation of control phase problems, such as the effects of measure-

..... ment noise: ...... =

42
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In most cases, the figures consist of three parts. Part A presents the inverse

identification error and vibration level as a function of the iteration number. The

top plot displays the three (or six) uncontrolled vibration levels responding from

three (or six) sinusoidal pitch inputs, and the bottom graph displays the amount

of identification error in the identified inverse over 100 iterations. After iteration

100, the control loop is closed and the inverse control of the vibration is begun.

For all steps (1 - 200), the identification error was found by subtracting the

know_ true inverse from the identified inverse, squaring the resulting elements,

and adding them all together to form a scalar index for plotting purposes. It

should be noted that for the (3 x 3) T matrix, the vibration signals produced

were imaginary, since the transfer matrix was not derived from actual flight

data. Part B of the figures lists a digital representation of the identification

and vibration data. This is useful in cases where it is necessary to distinguish

if the graphical results indicate convergence or very slow divergence from a

given flat region on the graph. Part C gives the identified, true, and initial

inverse estimate. This detailed breakdown makes the simulation results discussion

lengthy, but comprehensive. In most cases, though, the reader may skip over

the digital form of the results (i.e., parts B and C) without significant loss of

content.
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6.1

IDENTIFICATION OF THE Ir_HRSE MATRIX

WITH ARBITRARY INITIAL CONDITIONS

One of the nice properties of the extended LMS algorithm is that it is theoreti-

cally capable of identifying its own initial conditions prior to closed-loop contrcl.

That is, it is possible to start from some arbitrary initial estimate of the inverse,

and correct that estimate through open-loop perturbations in pitch control un-

til it becomes close enough to the true inverse for use with the inverse control

law.

The following set of figures present the simulation results from the (3

x 3) simulation. To simulate convergence (learning) properties during the

learning phase, the initial estimate of the inverse matrix was all zero. The

diagonal elements of Ks were then varied from 0.01 (Figure 9) to 0.47 (Figure

17). For simplicity of simulation, all elements of the diagonal Ks matrix

were chosen to be the same, and the off-diagonal terms were zero. The

results are presented in order of increasing Ks values, as summarized by Table

1. When viewing the figures, note the relationship between the magnitude

of the stability gain matrix diagonal elements and the inverse identification

convergence pattern. (Figure 18, page 69, presents a quick examination of this

relationship.)
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TABLE 1

Training Phase Runs for the (3x3) Simulation

Ks Stability Vector

0.01

0.10

0.15

0.20

0.30

0.35

0.40

0.45

0.47

Figure

10 A, B, C

11 A, B, C

12 A, B, C

13 A, B, C

14 A, B, C

15 A

16 A

17 A, C

18 A, B, C
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I CONTROL PIIASELEARNING PIIASE

GAIN VECTOR;

CONTROL RELAX:

1.0000

0.0100 0.0t00 0.0100

Figure 9A Learning Curve with Ks Diagonals --- 0.01 for the (3 x 3)
Simulation (Note Learning and Control Phases).
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ITERATION I.D. ERROR VIBRATION

! 0.00000 0.00000

2 1.27157 2.41634

3 1.25327 4.W4880

4 1.24013 6.60944

5 1.23575 7.99706

5 1.23399 8.37584

7 1.22527 7.58645

8 1.20869 8.93930

9 1,19360 4.00408

10 1.18571 q.17732

15 1.14068 3.16234

20 1.08713 2.72247

25 1.04795 13.06231

30 1,03363 2,60947

35 0.9989l 5.80914

kO 0.96564 4.13753

45 0.95062 11.49648

50 0.94018 2.66334

55 0.89991 3.68004

60 0.86896 2_58204

65 0.84757 7.96703

70 0.83019 4.17401

75 0.80878 3.16856

80 0.77829 2.76308

85 0.76989 13.01733

90 0,76765 2.66917

95 0.75463 5.81383

100 0,74012 3.00000

105 0,73975 0.35476

110 0.73968 0.1591_

115 0.73957 0.07123

120 0.73966 0.03188

125 0.73966 0.01q27

130 0.73966 0.00639

135 0.73966 0.00286

140 0.73966 0.00128

Iq5 0.73966 0,00057

150 0.73966 0.00026

155 0.73966 0.00011

160 _.73966 0._005

165 0.73965 0.00002

170 0.7396S 0,_0001

175 0.73966 Z.OZO_O

180 0.73955 0.0_00

185 0,73966 0.0000_

190 0.73965 0.00Z0_

195 0739r::_ 0.00008

200 0.73966 0._0000

i

Figure 9B Identification Errors and Vibration Level,

Ks Diagonals = 0.01.
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THE IDENTIFIED INVERSE

0.2285 0.0532 -0 .0325

0 . 0267 0 • 1529 -0 • 00g I

-0 • 0640 0 . 062g 0, 3476

THE TRUE INVERSE

0 . 6250 -0 . 2500 0 . 1250

-0 .2500 0.5000 -0 .2500

0 . 1250 -0 , 2500 0.6250

INVERSE INITIAL ESTIMATE

0,0000 0.0000 0.0000

0.0000 0, 0000 0.0000

0.0000 0.0000 0,0000

Figure 9C Identified, True, and Initial (3 x 3) Inverse Estimate,

Ks Diagonals ---- 0.01.
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Figure 10A Learning Curve _vith Ks Diagonals ---- 0.1 for (3 x 3) Simulation

(Note Learning and Control Phases).
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ITERATION I.D. ERROR VIBRATION

1 0.00000 0.00000

2 0.94165 2.41634

3 0.80996 4.44880

4 0.7_122 6.60944

0.78467 7.99706

6 0.77151 8.37584

7 0.75002 7.58645

8 0.7400_ 5.93930

9 0.73857 4.00408

10 0.73354 4.17732

15 0.56770 3.16234

20 0.36151 2.72247

25 0.32730 13.06231

30 0.31325 2.60947

35 0.30758 5.80914

40 0.30427 4.13753

45 0.29251 11.49648

50 0.26803 2.66334

55 0.17646 3.68004

60 0.14742 2.58204

65 0.10206 7.96703

70 0.0gg67 4.17401

75 0,07356 3.16856

80 0.05246 2.76308

85 0.04967 13.01733

90 0,04787 2.66917

95 0.04693 5.81383

100 _T_q_q_" _T_0000-

105 0.04023 0.00180

I10 0.04023 0._0_00

115 0.04023 0.00000

120 0.04023 0.00000

125 0.0h023 0.00000

130 0.04023 0.00000

135 0.0q023 0.00000

140 0.04023 0.00000

145 0.04023 0.00000

150 0.04023 0._0000

155 0._k023 0.00000

160 0.04023 0.00000

165 0._4023 0.00000

170 0._4023 0.00_0

175 0.04023 0 I_Oa

180 0.04023 0.0_00

185 0.04023 0 00000

190 0.04023 0.00000

195 0.04023 0.00000

200 0.04023 0 000_0

Figure 10B Identification Errors and Vibration Level,

Ks Diagonals = 0.1.
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THE IDENTIFIED INVERSE

0.5563 -0. 1683 0.0701

-0.1833 0.4208 -0.1968

0.0515 -0. ! 746 0.5743

THE TRUE INVERSE

0.6250 -0.2500

-0.2500 0.5000

0. 1250 -0.2500

0.1250

-0 2500

0 6250

INVERSE INITIAL ESTIMATE

0 . 0000 0 . 0000 0

0 . 0000 0.0000 0

0 , 0000 0 . _0_ 0

0000

0000

0000

Figure 10C Identified, True, and Initial (3 x 3) In_erse Estimate,

Ks Diagonals -- 0.1.
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Figure llA Learning Curve with Ks Diagonals -- 0.15 for (3 x 3) Simulation
(Note, Learning and Control Phases).
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ITERATION I.D. ERRO_ VIBRATION

i 0.00000 0.00000

2 0.78830 2.41634

3 0.63340 4,44880

4 0.62889 6.60944

5 0.82253 7.99706

G 0.60563 8.37584

7 0.58197 7.58645

8 0,57736 5.93930

9 0.57640 4.00408

10 0,57222 4.17732

15 0.39067 3.16234

20 0.20213 2.72247

25 0.18107 13,06231

30 0.16763 2.60947

35 0.16670 5.80914

40 0.16378 4.13753

45 0.15573 11.49648

50 0.13704 2.66334

55 0.07512 3.68004

60 0.06048 2.58204

65 0.03505 7.96703

70 0.03455 4.17401

75 0.01909 3.16856

80 0.01306 2.76308

85 0.01137 13.01733

90 0.01057 2.66917

95 0.01050 5.81383

100 0.0_935 3.00000

105 0.00795 0,00008

110 0.00795 0.00000

115 0.00795 0.00000

120 0.00795 0.00000

125 0.00795 0.00000

130 0.00795 0.00000

135 0.00795 0.00000

140 0.00795 0,00000

145 0.00795 0.00000

150 0.00795 0.00000

155 0.00795 0.00000

160 0.00795 0.00000

165 0.00795 0.00000

170 0.00795 0.00000

175 0.00795 0.00000

180 0.00795 0,00000

185 000795 0,00000

190 0.00795 0.00000

195 0.00795 000000

200 0.00795 0.00000

Figure llB Identification Errors and Vibration Level,

Ks Diagonals -- 0.15.
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THE IDENTIFIED INVERSE

0.6008 -0.2095 0 . 100_

-0.2265 0.4607 -0.2261

0. _ 025 -0._ 12W 0.6021

THE TRUE INVERSE

0.6250

-0.2500

0.1250

-0.2500

0.5000

-0 2S00

0

-0

0

1260

2500

62S0

INVERSE INITIAL ESTIMATE

0.0000 0

0.0000 0

0,0000 0

0000 0

0000 0

0000 0

0000

0000

0_00

Figure llC Identified, True, and Inhial (3 x 3) Inverse Estimate,

Ks Diagonals ---- 0.15.
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1.0000

0 , 20_0 0,2000 0.2000

Figure 12A Learning Curve with Ks Diagonals -- 0.2 for (3 x 3) Simulation

(Note Learning and Control Phases).
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ITERATION I.D, ERRO_ VEBRATION

1

2

3

4

5

6

7

8

9

10

15

20

25

30

35

40

q.5

50

55

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

145

50

55

50

65

70

75

80

85

190

195

200

0.00000 0.00000

0,6563_ 2.41634

0.50652 W.44880

0.49325 6.60944

0.48798 7.99706

0.46850 8.37584

0.43972 7.58645

0.43746 5.93930

0.43640 4.00_08

0.43350 4.17732

0.26057 3.1623_

0.10964 2.722q7

0.09593 13.06231

0.08587 2.609_7

0.084_g 5.8091q

0.083_! 4.13753

0.07819 11.49648

0.06528 2.6633_

0.03039 3.6800_

0.02344 2.5820q

0.01208 7.96703

0.01189 4.|7401

0.00452 3.16856

0.00317 2,76308

0.00251 13.01733

0.00224 2,66917

0.00222 5.81383

0.00195 3.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0.00000

0.00151 0,00000

0.00!51 0.00000

0.00151 0.00000

0.0_151 0.00000

0.00151 0,000_0

0.00151 0.00000

0.00151 0,00000

0,00151 0.00000

Figure 12B Identification Errors and Vibration Level,

Ks Diagonals ---- 0.2.
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THE IDFNTIFIED INVERSE

0.6191 -0.2306 0. I I _7

-0,2q42 0._80g -0,2398

0.1193 -0.2312 0.6150

THE TRUE INVERSE

0.6260

-0.250

0.1250

-0,2500

0.5000

-0 2500

0.1250

-0.2500

0. 6250

INVERSE INITIAL ESTIMATE

0.0000

0.0000

0,0000

0 0000

o 0000

0.0000

0.0000

0.0000

0.0000

Figure 12C Identified, True, and Initial (3 x 3) Inverse Estimate,

Ks Diagonals --- 0.2.
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Figure 13A Learning Curve _vith Ks Diagonals =.0.3 for (3 x 3) Simulation

(Note Learning and Control Phases).
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p
[TERATION I.O, ERROR V IBRATION

1 0.00000 0,00000

2 0.45657 2.41634

3 0.40161 4.44880

4 0.31746 6.60944

5 0.30090 7.99706

6 0.27725 8.37584

7 0.225_g 7.58645

8 0.22529 5.93930

g 0.22546 4.00408

10 0.22430 4.17732

15 0.10265 3.16234

20 0.02622 2.72247

25 0.02252 13,06231

30 0.01812 2.60947

35 0.01766 5.80g14

40 0.01743 4.13753

45 0.0t604 I1.qg648

50 0.01346 2,66334

55 0.00261 3.68004

60 0.00136 2.68204

65 0.00088 7,96703

70 0.00078 4.17401

75 0.00010 3.16856

80 0.00008 2,76308

85 0.00006 13.01733

90 0.00005 2.66917
g5 0.00004 5.81383

100 0.00005 3.00000

105 0.00004 0.00000

110 0.00004 0.00000

115 0.00004 0.00000

120 0.00004 0.00000

125 0.00004 0.00000

130 0._0004 0.00000

135 0.00004 0.00000

lq0 0.00004 0.00000

145 0.00004 0.00000

150 OIZ@ZZW 01000_Z

155 0.00004 0 00000

160 0.00004 0.00000

165 0 I_0004 0.08080

170 0.00004 0.00000

175 0.00004 0_00000

180 0.00004 0.00000

185 0.0000_ 0.00000

190 0.00004 0 I00000

195 0.00004 0.000Z0

200 0,00004 0.00000

i

izzi: i--

Figure 13B Identification Errors and Vibration Level, Ks Diagonals -----0.3.
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THE IDENTIFIED INVERSE

0.6262 -0 .247! 0. 12L_1

--0 . 25 1 3 0 . 4968 --0 . 24g !

0. 1266 --0 .2463 0.6239

THE TRUE INVERSE

0.6250 -0.2500

-0.2500 0.5000

0.1250 -0.2500

0.1250

-0 2500

• 6250

INVERSE INITIAL ESTIMATE

0.0000 0.0000 0

0.0000 0.0000 0
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Figure 13C Identified, True, und Initial (3 x 3) Inverse Estimate,

Ks Diagonals -- 0.3.
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Figure 16C Identified, True, and Initial (3 x 3) Inverse Estimate,

Ks Diagonals -- 0.45.
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ITERATION I.D. ERROR VIBRATIO_

1 0.00000 0.00000

2 0.31329 2.41634

3 0.378&7 4.44880

4 1.17067 6.6094_

5 0.24943 7,99706

6 0.20252 8,37584

7 0.09812 7.58645

8 0.11914 5.93930

9 0.20665 4.00408

10 0.20425 4.17732

15 0.02433 3.16234

20 0.00956 2.72247

25 1.68514 13.06231

30 10.2940g 2.60gt÷7

35 1.04530 5.80914

hZ 0.65607 4.13753

45 0.42915 ll.496L_8

50 25.00018 2.6633_

55 1.19192 3,6800_

50 0,87958 2.58204

65 0.06783 7.96703

70 0.05677 4.1740!

75 0.00261 3.16856

80 0.00036 2.76308

85 0.11338 13.01733

90 0,08291 2.65917

95 0.03490 5,81383

100 0.08g_7 3.00000

105 0.28k06 2.37973

110 0.25045 3.32919

115 0.24333 3.79522

120 0.24062 4.08815

125 0.23925 4.297q6

13_ 0.238_5 4,45848

135 0.23793 W.58840

lqZ 0.23757 4.6gG78

145 0.23731 4.78941

150 0.2_711 4.87009

155 0.236g5 #,9blqO

160 0.23G83 5,00519

165 0.23573 5._6282

170 0 23565 5.11532

175 0.23658 5.16348

189 0.23552 5.20792

185 0 23546 5_24916

190 0.235_2 5.2876_

195 0.2353S 5.32359

200 0.2363_ 5.35739

Figure 17B Identification Errors and Vibration Level,

Ks Diagonals -- 0.47.
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Ks Diagonals -- 0.47.
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For very low values of Ks the convergence is smooth, but slow. For higher

values of Ks, the speed of convergence increases, until it becomes oscillatory

at /£8 equal 0.40, and unstable for Ks greater than or equal to about 0.45.

The results are summarized in tabular form below, and graphically in figure

18.

TABLE 2

Convergence Times and Stability Trends for (3 x 3) Simulation
Starting from Zero Initial Conditions on the Inverse Estimate

Ks ITERATION TO CONVERGENCE

-0.01 Greater Than i00

-0.i0 Not Quite After 100 Steps

-0.15 tO0

STABILITY

Overdamped Convergence

Overdamped Convergence

Overdamped Convergence

-0.20 73 Overdamped Convergence

-0.30 60 Critical

-0.35 53 Slightly Underdamped

-0.40 52 Large Oscillations

-0.45 Converged, But Unstable Large Oscillations

-0.50 Will Not Converge Unstable
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Figure 18 Comparison of Identification Error for Various Ks Diagonal

Element Values.
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Since the learning phase pitch commands were known, it was possible to

compute the signal information matrix. For each iteration, N, of the learning

cycle the learning phase pitch commands were,

e(N, 1) -- Sine(Nil5.0 + 7.0/15.0)

e(N, 2) = Sine(N/20.O)

e(N,3) = Sine(Y/lO.O- 3.0/30.0)

The signal information matrix, E(,_Z,'XZT), was then computed by performing

the indicated multiplication over an appropriate number of cycles. When this was

done, the eigenvalues of this matrix were found to be,

_1--0.1734

X2_0.9935

k3 _2.6219

From this information, the theoretical stability limit for the Ks elements

was,

1 1

krnax 2.6219
--0.381

or,

0 < ki <0.381

: which: was in good agreement with the experimentally found convergence limit

of about 0.40 . The numbers were not the same because the slower modes had

a stabilizing influence on the fastest mode, upon which the stability criteria was

based.
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More than this, the theoretical learning curves associated with the eigen-

values of the signal information matrix were generated and compared to

the experimental learning inverse error. Recalling that the learning curve

time constants associated with each normal mode and k i are predicted

by:

the normal mode learning time constants are,

1

_'1 (0.347)ksl

1

r2 -- (1.987)ks2

1

13 -- (5.244)ks3

Table 3 compares the identification error associated with each mode assuming

that the initial inverse estimate square error was 1.31, and that the Ks diagonal

elements were all equal to 0.15. From this table, it is seen that the experimentally

found learning curve appears to be an average of the learning curves associated

with the normal modes. The faster modes can be viewed as being responsible

for rapid initial learning, while the slow modes govern final convergence. These

modes have been roughly indicated in Figure 19. It appears that the best

selection of the I(s elements is, therefore, a compromise between stabie and fast

convergence.
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TABLE 3

Comparison of Experimental and Normal Mode
Predicted Learning (Identification) Error

STEP

0

2

4

2O

7"I_ 20

1.31

1.22

1.15

=3.5

1.31

• 3 = 1.5

1.31

AVERAGE

1.31

0.77

0.66

0.45

0.11

0.81

0.64

EXPERIMENTAL

0.74

0.73

0.49 0.02 0.00 0.17 0.24

40 0.18 0.00 0.00 0.06 0.20

60 0.07 0.00 0.00 0.02 0.07

80 0.02 0.00 0.00 0.01 0.02

I00 0.01 0.00 0.00 0.00 0.01
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Figure 19. The Learning Curve of the Adaptation
Process Showing Convergence Modes for
the (3 x 3) Simulation with Ks=O.30
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6.2

ADAPTIVE INVERSE CONTROL SIMULATION

WITH THE (3 X 3) T MATRIX

Once the inverse matrix identification error is small enough, the vibration

control phase may be initiated by using the inverse matrix to generate vibration

control commands. For the (3 x 3) simulation, this was done after 100 iterations.

This section presents five plots to show the behavior of the (3 x 3) simulation

during the control phase. The Ks diagonal elements were chosen to be 0.30, since

this value produced the most rapid convergence without oscillations or instabilities

about the true solution. For these simulation runs, the uncontrolled vibration

vector elements were held constant at 1.0, after the start of the control phase.

This simulation represented the simplest case, in which the vibration vector to

be minimized was held constant. Figure 20 shows the uncontrolled vibration

levels, for no control (or, control relaxation set to zero). Note that control

relaxation refers to that fraction of the inverse control actually implemented,

expressed as a number between zero and one. Figure 21 shows that, even for

control relaxation of 0.6, the vibration decreases to near zero in tv:o or three

iterations.
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ITERATION I.D. ERROR VIBRATION

I 0.00000 0.00000

2 0.45657 2.41634

3 0.40161 4.44880

4 0.3174G 6.50gq4

5 0.30090 7.99706

6 0.27725 8.37584

7 0.22549 7.58645

8 0.22529 5,93930

9 0,22546 q.00408

10 0,22430 4.17732

15 0.10265 3.16234

20 0.02622 2.72247

25 0.02252 13.06231

30 0.01812 2.60947

35 0.01766 5.80914

40 0.01743 4.13753

45 0.01G04 11.49648

50 0.01346 2.66334

55 0.00261 3,68004

60 0.0013,5 2.58204

65 0.00088 7.96703

70 0.00078 W.1740!

75 0.00010 3.16856

80 0.00008 2.76308

85 0.00006 13,01733

90 0.00005 2.66917

95 0.00004 5.81383

100 0.00005 3.00000

105 0,00005 3.00000

110 0.00805 3.00000

115 0.00005 _.00000

120 0.00005 3.00000

125 0.00005 3.00000

130 0.00005 3.00000

135 0.00005 3.0@@@0

140 0.00005 3.00000

IW5 0.00005 _.00000

150 0.0005 3.00@00

155 0.00005 3.00000

l&O 0.80005 3.00000

155 0.00005 _.00000

170 0.00005 3.00000

175 0.000_5 3.00000

180 0.00005 3,00000

185 0.00005 3.00000

190 0.00005 3.00000

195 0._009 3.00000

200 0,00005 3.00000

Figure 20B Identification Errors and Vibration Level for No Control

Ks Diagonals = 0.30.
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Figure 21B.
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The next test was to see how well the adaptive inverse controller would track

a change in the operating conditions. The first disturbance was a step change in

the uncontrolled vibration. Figure 22 shows the effect of changing the uncontrolled

vibration at step 130 from (1.0, 1.0, 1.0) to (2.0, 1.5, 0.5). The second disturbance

was to change the transfer (T) matrix by 10 and 30 percent while introducing the

step in uncontrolled vibration. These results are shown in Figures 23, 24, 25, and

26.

AT
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Figure 25B. Identification
Level
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Figure 26B. Identification Error and Vibration
Level
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I .
In each case, although the vibration was still nearly eliminated, a steady-state

error remained in the identified inverse matrix after the step changes in vibration

and T. An error was introduced into the inverse matrix because, although the

identification update to the inverse estimate was made proportional to (Ae --

C(k)AZT), the change in vibration, AZ, did not correspond to the change

in cyclic pitch, Ae, at iteration 130 due to the introduction of a step in the

uncontrolled vibration. Hence, the inverse estimator interpreted the error as

a result of improper inverse matrix identifcation, rather than as a change in

uncontrolled vibration. After step 130, the changes in pitch correspond to the

changes in vibration, and the inverse estimate is recorrected with some residual

error.

The reason for the residual steady state identification error can be found

by examination of the inverse control law and the inverse update equa-

tion:

As: =

cr(k + = c r(k)+ 2k  z( e: - c r(k) z r)

It is seen that if the measured vibration level goes to zero, the commanded

change in pitch will also go to zero. This, in turn, causes the change in

vibration, AZ to go to zero, and thereby makes the inverse up_Jate term

go to zero. Hence, the inverse estimate is prevented from changing, even

though the inverse may be in error. Reaching the optimal control before

the inverse can be identified with low error presents problems only in that

the controller is more likely to become unstable in the event of a sudden

change in the vibration vector. Note that the reason the optimal pitch

may be found before the inverse is completely identified is becau¢- it may
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have been formed by some linear combination of AOs over several itera-

tions.

This line of reasoning suggests that if the control is relaxed, or in other

words, if the implemented control is only allowed to be a fraction of the

commanded control, the identification might be improved. This was shown

in Figures 25 and 26, where a lower steady-state identification error was

achieved by reducing the control relaxation from 1.0 to 0.3 Note that

the lower steady state inverse identification error is traded-off there against

a slower vibration reduction time. It is evident that control relaxation,

as well as the stability gain matrix selection, have an influence on inverse

identification.

Many other runs were made with the (3 x 3) simulation, but are not presented

here in deference to presenting similar results from the (6 x 6) simulation, to be

discussed next.
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6.3

ADAPTIVE INVERSE CONTROL SIMULATION

WITH THE (6 X 6) T MATRIX

Unfortunately, no (6 x 6) transfer matrices of the type discussed in Section

3.3 were available from test data. However, another (6 x 6) transfer matrix,

representing the 4]Rev response to cyclic pitch oscillations at 2/Rev, 3/Rev,

and 4]Rev was available from the test data of Chopra and McCloud, 1981.

This matrix (figure 27) was used as if it represented the 4/Rev response to

4]Rev longitudinal, collective, and lateral pitch oscillations. This matrix is

less well conditioned than the (3 x 3) matrix, but performs similarly when

scaled. By scaling the rows of the matrix, the numerical accuracy of the

inverse control technique is improved, in that, the inverse need not contain very

small or large numbers. This corresponds to adjusting the input gains on the

accelerometer (vibration) input channels. If the vibration signal is not too small,

then the transfer matrix terms will not be too small, and the inverse terms too

large.

An important feature of the (6 x 6) simulations was that the effect

of control relaxation was studied extensively. Figure 28 has been included

_o give the reader an idea of how the vibration control is influenced by

changes in the control relaxation term. For no relaxation (relaxation constant

= 1.0), the vibration is alleviated in one step (Figure 28), as expected.

Note that as the relaxation constant is made closer to zero, the vibration is

reduced at a progressively slower rate. With the control relaxation set to

zero, the vibration is uncontrolled, as seen in the last frame. Note that for
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these figures, the inverse matrix is without error. ]_ence, these plots form a

baseline case in which inverse vibration control is only a function of the control

relaxation.

Response
harmonics

Vertical

acceleration

4 cos

4 sin

Lateral

acceleration

4 cos

4 sin

Longitudinal
acceleration

4 cos

4 sin

Control harmonics

2 cos 2 sin 3 cos 3 sin 4 cos 4 sin

-15.17 -2.02 18.73 -56.22 102.96 20.05

-5.87 -22.50 54.65 17.76 -21.61 67.37

0.73 8.98 -20.52 -2.79 9.34 -8.19

-5.52 6.91 2.80 -21.07 20.52 1.93

-0.98 0.26 0.05 -2.28 3.89 0.62

-0.42 -i.ii 2.04 -0.09 -0 22 1.71

Figure 27 Data for a (6 x 6) Transfer Matrix, taken from Controllable

Twist Rotor (Chopra and McCloud, 1981).
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For the (6 x 6) simulation runs, the learning phase concept was not used.

The reason for doing this was to simulate the control phase identification

dynamics, for which each change in vibration, in essence, formed a ne_v initial

condition. The procedure used in the (6 x 6) simulations was to therefore

select an initial estimate of the inverse matrix, and then study resulting control

phase.

In Figures 29 through 31, the initial estimate of the inverse matrix

was sdlected to be in error by ten percent, and the stability gain matrix,

Ks, was selected with all diagonal terms equal to 0.001 The con-

trol relaxation term was then varied from 0.01 in Figure 29, to 1.0 in

Figure 31. Figure 30 presents the "Part A" results to conserve space.

The effect of using progressively less control relaxation, should be noted.

Whereas the inverse is identified well with high control relaxation (figure

29C), the inverse is poQrly identified for low control relaxation (figure

31C).
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Initial Inverse Error, and Control Relaxation of 0.01 for the

(6 x 6) Quasi-Steady Vibration Control Case
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Figure 29B Identification Error and Vibration Level for Ks Diagonals = 0.001,

10 Percent Initial Inverse Error, and Control Relaxation of 0.01

for the Quasi-Steady (6 x 6) Vibration Control Case.
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Figure 29C Identified, True, and Initial Inverse Matrices for ICs

Diagonals -- 0.001, and Control Relaxation of 0.01 .
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Figure 31B Identification Error and Vibration Level for Ks Diagonals -- 0.001,

10 Percent Initial Inverse Error, and Control Relaxation of 1.0

for the Quasi-Steady (6 x 6) Vibration Control Case.
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Figure 31C Identified, True, and Initial Inverse Matrices for

Ks Diagonals -- 0.001, and Control Relaxation of 1.0 .
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It is now seen that, unlike the case of using a perfect inverse estimate,

with no error, the vibration control and identification may go unstable if the

control is not relaxed enough. When t]_e control is very relaxed (relaxation

term small), the vibration reduction is smooth and steady. Vibration control

improves as the control is relaxed less and less. Identification and control

are unstable if the reluxation constant is 0.91 or higher, for the case of ten

percent initial error in the inverse matrix. Also note that if the vibration

is alleviated too quickly, a steady-state error in the identified inverse matrix

persists. As before, the reason for the steady-state error is that once the

vibration goes to near zero, the inverse update (or correction) also goes to

zero.

The next figure shows the same type of results, with the initial estimate

of the inverse again in error by ten percent, but with the diagonals of (Ks)

increased to 0.01 . The results are presented in order of decreasing control

relaxation.
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Note that now even a relaxation term of 0.3 quickly destabilizes the

adaptive inverse vibration control method. The boundary value for stable

ccntrol and identification is where the relaxation term is 0.2870, (Fi_lre

32). Note the interesting convergence pattern when stability is just mar-

ginal.

These results indicate that equivalent results are obtained by using a control

relaxation of 0.2 with Ks diagonals of 0.001 or by using a control relaxation

of 0.25 with Ks equal to 0.01. Note, however, that in the latter case, the

system is closer to the unstable control relaxation limit. Furthermore, vibration

reduction with Ks equal to 0.01 cannot be made to work as fast as that shown

in Figure 30, showing Ks equal to 0.001 with a control relaxation of 0.87.

The next figures show that as the stability gain diagonal elements are in-

creased, the control must be more and more relaxed to achieve stable vibration

reduction.
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The conclusion is that there are no absolute limits on either the magnitude

of the stability gain matrix or the amount of control relaxation. Rather, it is

the product of the control relaxation and the stability gain matrix magnitudes

that is important. For Ks diagonal elements of 0.05, the relaxation constant

must be less than 0.1155 . If the Ks diagonals are 0.1, the relaxation term

can be no greater than 0.07. For Ks diagonals ot' 5.0, the identification is still

stable if the control relaxation is less than 0.0081 These points represent

the points of maximum control relaxation which can be tolerated without

making the system unstable, and have been plotted in Figure 36. This plot

indicates that when the magnitude of the Ks diagonal elements are chosen to

be 0.001, or less, the amount of control relaxation need be small (relaxation

term large). Higher values of Ks have narrower control relaxation stability

regions.

It seems that it is better to choose the diagonal elements or Ks small, and

use a small amount of control relaxation, rather than choosing the diagonals

of Ks to be large, and having a very narrow range of stable control relaxa-

tion values. For example, in figure 33 it is seen that for a Ks of 0.05,

that a control relaxation of 0.1155 produces good convergence, whereas con-

trol relaxation of 0.1156 produces completely unstable convergence. Moreover,

the preceding plots show that when Ks is large, the overall vibration reduc-

tion is slower, due to the higher amount of control relaxation needed to

achieve stability. Hence, using smaller Ks diagdnal elements and less control

relaxation appears to make the LMS adaptive inverse control technique more

robust.

The following figures present results for the same type of simulation

as that done for the above eases, except that the initial estimate of the
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inverse is in error by fifty percent, rather than ten percent. For each

group of runs, the diagonal elements of the stability gain matrix are

held constant, and the relaxation term is varied to explore the stability

limits.
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Figure 36 Plot of Adaptive Inverse Control Marginal Stability Points

for the (6 x 6) Simulation for 10 Percent Inverse Error,

Quasi-Steady Vibration Control Cases.
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Percent Initial Inverse Error, but Different Control

Relaxation Values.
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Figure 42 Comparison of Initial, True, and IdentifiedInverses for

50 Percent Initial Inverse Error, but Different Control

Relaxation Values.
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Again, it is found that as the diagonal terms of Ks are increased, the

control must be more and more relaxed to obtain stable convergence. Moreover,

it is seen that the relaxation limits become smaller as Ks becomes larger.

The points of neutral stability have been plotted in Figure 43. In some

cases, the relaxation must be so low that it is doubtful that the controller

would be capable of functioning in an adaptive fashion. Whereas the (3 x 3)

simulation had little trouble adapting the inverse estimate from all zeros, the

higher order simulation evidenced troublesome identification if the initial inverse

estimate w_s too far from the true inverse _alues. Hence, vibration control

performance is compromised if the a plant inverse is too far away from the current

estimate.

Figures 44, 45, and 46 plot the minimum identification error for three

values of Ks as a function of control relaxation. It is seen that the

LMS estimator is more tolerant to various control relaxation values if

the stability gain magnitude is kept small. For high /(8 values, only

a very narrow region of control relaxation values will be even marginally

stable.
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Figure 43 Plot of Adaptive Inverse Control Marginal Stability Points

for 50 Percent Initial Inverse Error, for the

Quasi-Steady (6 x 6) Simulation.
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6.4

EFFECTS OF MEASUREMENT NOISE ON

LMS AD?LPTIVE INVERSE CONTROL

==

In actual implementation of the extended LMS algorithm to control helicopter

vibration, it is reasonable to expect some measurement noise (or FFT conversion)

errors on the sensed vibration vector. Simulation studies with the (6 x 6) matrix

were therefore made to determine the effect of noise on the performance of the

LMS adaptive inverse control method. To do this, white noise was added to the

sensed vibration vector representing the Fourier coefficients of the accelerometer

signals.

The following figure demonstrates perfect inverse control in the presence

of 1, 5, 10, and 20 percent white measurement noise. For these simula-

tion runs, the initial inverse estimate contained no error and was not al-

lowed to change (Ks -- zero). The vibration is seen to be reduced to

zero to within the tolerances permitted by the measurement noise. This

figure is intended to serve as baseline comparison case which represents

ideal inverse control using a perfect inverse and white measurement noise

_ only.
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The first question to be raised was whether or not the adaptive inverse

control method was stable in the presence of white measurement noise. The

answer, somewhat surprisingly, was that the method was not stable for even

the most benign cases of sensor noise. Figure 48 illustrates that even for

one percent measurement noise, and a Ks -- 0.001 that the convergence

process is unstable. The vibration appears to have been controlled well here,

but examination of the digital record following the plot shows that the in.-

verse identification error is growing with the number of iterations. Figure

49 shows that when the noise level is increased to five percent, the i_verse

identification error grows rapidly. Similar results are seen in Figure 50, where

the noise has been left at one percent, but the stability matrix diagonals in-

creased from 0.001 to 0.01 Finally, in Figure 51 the identification process

has been made very unstable with five percent noise and Ks equal to 0.01.
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Figure 48C Comparison of Identified, True, and Initial Inverse Matrices

for 1 Percent Measurement Noise Sho_ving Divergence from

Perfect Initial Conditions on Inverse.

Ks Diagonals = 0.001, Contr. Relax. -- 1.0.
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Figure 51C Comparison of Identified, True, and Initial Inverse Matrices

for 5 Percent Measurement Noise Showing Divergence from
Perfect Initial Conditions on Inverse.

Ks Diagonals _ 021, Contr. Relax. -- 0.20.
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The interesting feature to note is that the identification error reaches

a plateau with increasing iteration number. If the identified inverse is ex-

arained at the end of run, it is found that it has all elements nearly

equal to zero (Figure 51C). This explains the plateau region of the

identification error. The added noise hi_s corrupted the association between

the changes in measured vibration and applied changes in cyclic pitch control.

E:_nce, a matrix of zeros is found as an indication of no identified associa-

tion.

To further explore the effects of noise, simulation runs were conducted

in which the initial inverse estimate was in error by ten percent, and

a step change in the uncontrolled vibration was introduced at iteration

100. Figure 52 shows the uncontrolled vibration case for no adaptive in-

verse control and inverse control of the vibration with the Ks diagonals

equal to 0.001, and a 0.1 control relaxation. In both cases, no measure-

ment noise was introduced. After the step change in uncontrolled vibra-

tion, the new vibration vector was quickly minimized in a few itera-

tions.

With one percent white measurement noise, the adaptive inverse control tech-

nique appeared to be successful in terms of controlling the vibration and con-

verging to the true inverse after the step disturbance (Figure 53). Ho_vever,

for 5 percent measuremel_t noise, the control system was spectacularly un-

stable. Note the large increase in the inverse estimate error at iteration

100, produced by adding a step in vibration. This error resulted from the

change in vibration being unrelated to the change in pitch at the same itera-

tion.
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The fir'_t thought which came to mind was to reduce the stability gain

constant 7(s (o1' the relaxation constant) so that the estimator would not track

the noise disturbances. As seen in figure 54, this approach seemed to work.

Ks was reduced to 0.0001, and the vibration appeared at first glance to have

been controlled successfully. However, when the digital record was examined

more closely (figure 54B), it was seen that the identification error was still

increasing. Hence, reducing the magnitude of the stability gain elements only

retarded the onset of the impending identification instability. A very low Ks also

made the extended LMS algorithm less responsive to changes in the operating

conditions.

The effect of relaxing the control was shown (Figure 55) to have

even more disastrous consequences. The reason for the even more un-

stable behavior is that when the control step size was reduced, the noise

at each step was made greater relative to the true change in vibra-

tion associated with each change m the cyclic pitch vector. Hence, by

increasing the control relaxation, the signal to noise ratio was further

degraded.
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ITERATION I.D. ERROR VIBRATION

1

2
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4

5

6

7

8

9

10

0.00000 0.00000

2.70784 149,91574

2.59598 128.22580

2.64891 115 ,5L1"104

2.44081 101.01019

2.47238 102,48978

2.k8193 01,37861

_.35151 77.14806

2.28532 65.54290

2.28890 64.40995

15 !.97084 37.56799

20 1.5423_ 15,48847

25 1.43040 10.37495

30 1.22658 Iq.63841

35 0.92553 8.32088

40 0.86039 8.65423

45 0.75268 7.86946

50 0.74101 _9.94352

55 0.81290 8.81204

60 0.48714 9.62729

65 0.40817 9,51646

70 0.38369 9.14383

75 0.36201 7,53644

80 0.20626 7.52283

85 0.14886 7.37019

90 0.11373 9.29998

95 0.05785 6.60838

100 23.32772 122.44373

105 23.23248 g5.42108

110 23.01586 73.505t2

115 23.66547 60.39556

120 24.30606 4_,06903

125 24.32661 41.76141

130 24.30917 28.40005

135 24.59439 27.22986

140 24.37214 24.59882

145 24.82065 15.94469

150 24 82135 10.12398

155 24.41597 !q.00892

160 24.25171 9.65614

165 24.28445 13.57069

170 24.2726! 5.69457

175 24.77678 9.32713

180 25.10925 4.04190

185 25.26221 8.84717

190 25:&S7e4 6.40113

195 26.k4195 7.77266

200 26,57768 7.72467

Figure 54B Identification Error and Vibration Level for Vibration Change

at Step 100, with Ks Diagonals = 0.0001, Control

Relaxation of 0.10, and 5 Percent White Noise.
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The noise problem was remedied by averaging the control and response

signals over a small number of iterations. In this method, for example, the

last ten vibration measurements and pitch control commands were stored in

memory. When a new vibration measurement was taken, it was added to

the previous nine vibration measurements. The average was then found and

used as the current vibration measurement for use with the inverse control lv.:_.

Similarly, the last ten cyclic pitch commands were averaged over ten cycles for

use with the extended LMS estimator. Hence, for the case of ten averaging

cycles,

and,

k

as(k)=
n----k--9

k

az(k)= F.
n_-k_9

Figure 56 shows successful identification and control for Ks diagonal ele-

ments of 0.001 with control relaxation of 0.1, at the 5 percent, 10 percent,

and 15 percent noise levels, using the averaging method. The vibration was

reduced, and the identification error became smaller with increasing number

of iterations. For 20 percent noise, the inverse identification was again un-

stable.

138



III

III

+

-ill

iiii

Yx

__L+_I I i I l l i i I L_J___L_

• I m s [ u v t • n A • l • m

5 Percent Noise

1• i11 111 +11

I M V [ m I E I O [ M f I @ I C + T I Ok | II I ON l

t

__A_i_._t_A_I___L_I_I I I . I..1_ ,I. [- I I I I

• [ N s [ o v ! • m • r I o

10 Percent Noise

ii I lie i$I 111

i mvt nit I • E m + I P I ¢ A ? I 0 m I m m O s s

u_

+ ++
:+i_+:

• E m s + o v I l m A r I o N

15 Percent Noise

| N V E l S [ ! 0 I_ N T I _ I CA _t I Ok [ l R 0 1 1

i 1[3 O

<:_Z_-. "+_" +++'-+.++.'++"++, • ".'_ ." ;

l_-_ _+ +_+Y +++++_++++++ +_- -_ ++_ _+_o + _-,_-.J

m o ,¢_a>'c°o+a>°o?+_+'`'++- _ + _" " I

l C N .s _ o + v I I * • r I o N

20 Percent Noise

sl iii ++w 1++"

| m v [ m s + I o t l+ i I • I c + + I o m I I I o I I

_'z=: _+:

Figure 56 LMS Adaptive Inverse Control with I(s Diagonals = 0.001 and
0.10 Control Relaxation, with 5, 10, 15, and 20 Percent Noise

Using Averaging Method with 10 Cycles.

139



If the relaxation constant is increased from 0.1 to 0.8, the averaging

method will allow accurate identification with 20 percent measurement noise

(Figure 57). -Figure 58 shows that thirty percent noise can also be handled

if the control relaxation is set at .18. Furthermore, figure 59 illustrates that

if the T matrix elements are changed by ten percent while executing the

step change in vibration at iteration 100, the adaptive inverse control method

using averaging will still be stable and responsive to changes in operating

conditions.

? = 7 7 _
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The averaging method for reducing noise sensitivity appears to provide

a simple, yet effective, means for improving the robustness of the adap-

tive inverse control method. If fact, if not done, the LMS adaptive inverse

control method will not work at all. This does not invalidate the theory

presented previously in the analysis section. This is because the extended

LMS identification analysis (Section 5) only proved inverse identification con-

vergence in the limit of many control and identification cycles. Nothing can

really be said about any particular measurement. By averaging, the effect is

to take out the measurement noise by building a memory into the extended

LMS filter. The memory slows the adaptive response time somewhat, yet

not to a significant degree, because for stable convergence, an amount of con-

trol relaxation is needed anyway. Hence, the loss in response time caused

by averaging is more or less made up by the fact that less control relaxa-

tion is needed to stabilize the adaptive process when using the averaging

method.

6.5

VIBRATION CONTROL USING THE AVERAGED

LMS ADAPTIVE IN%'ERSE CONTROL METHOD

In the previous (6 x 6) simulations, the adaptive inverse transient identification

behavior was simulated for only step changes in the uncontrolled vibration

level. The reason for this was that there was much to be learned from

that simple exercise. However, it is still desirable to know how _vell the
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extended LMS algorithm can track rapid changes in operating conditions,

such as those produced by wind gusts impending on the helicopter. For

these simulations, the averaging method presented in the last section has been

used.

The challenge presented by these simulation runs was to minimize a con-

tinuously changing uncontrolled vibration vector. The uncontrolled vibra_

tion vector elements were wried in a sinusoidal fashion. Furthermore,

each element was varied at a different rate, to see when the LMS adap-

tive inverse process could no longer track the changes in operating condi-

tions.

The case of uncontrolled vibration resulting from no adaptive inverse

control is shown in Figure 60, along with the ideal inverse vibration con-

trol level possible, using an inverse with no error and a sensed vibration

signal with no measurement noise. The latter forms the ideal baseline

comparison case for the transient identification performance analysis to fol-

low.

_rrV_vr
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The case of no measurement noise is examined first. Figure 61 shows that

for I(s diagonals of 0.001 and control relaxation of 0.4, the vibration of all but

the fastest varying two channels has been controlled. By decreasing the control

relaxation to 0.8, the vibration level for each channel has been controlled to an

acceptable degree.

When measurement noise is added to the vibration measurement, the outcome

is slightly different. Figure 62 repeats the case for the Ks diagonals of 0.001 with

a control relaxation 0.8. It it now seen that the fastest varying channel cannot

really be controlled at all. The control for the other channels is acceptable. It is

also seen that reducing the control relaxation to 0.5 does not change this outcome

very much.
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Changing the amount of control relaxation did not enhance the tracking

performance of the fastest varying channel. The most likely explanation is

that the channel changed too fast relative to the time constant of the ten

cycle averaging which took place on the measured vibration. Hence, the

conclusion is that the averaged LMS adaptive inverse control technique can

form a robust vibration control system, provided the changes in the vibration

h_rmonics to be controlled do not change on the order of the averaging time

constant of the identification process. Wind tunnel experimentation or actual

flight testing is needed to determine the necessary degree to which the averaging

technique is needed to make the LMS adaptive inverse control method work

successfully.

Y
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VII. CONCLUSIONS

The extended LMS adaptive inverse control technique was shown to have good

potential for reducing N/Rev helicopter fuselage vibration. The few number of

operations required to implement the method makes it computationally attractive.

Computer simulations using the (3 x 3) and (6 x 6) transfer matrix models

were used to help validate and extend the results predicted by the theory. The

overall conclusion is that the LMS adaptive inverse control method can form a

robust vibration control system, but will require some tuning of the input sensor

gains, the stability gain matrix, and the amount of control relaxation to be

used.

27
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The extended LMS algorithm can be used to adapt an initial estimate of

the inverse prior to closed-loop control. For low rank order plants, such as the

(3 x 3) simulation, the extended LMS algorithm can be started without any a

priori knowledge of the inverse matrix. The learning phase of the method was

shown to be capable of identifying the inverse, starting from an initial inverse

estimate consisting of a matrix of zeros. The learning curve of the controller

during the learning phase was then shown to be quantitatively close to that

predicted by averaging the learning curves of the normal modes. The (6 x 6)

simulation, however, indicated that for higher order transfer matrices, a rough

estimate of the inverse is needed to start the algorithm efficiently. The more the

starting estimate is in error, the more likely the identification process will become

unstable.

For best performance, the stability gain matrix elements should be chosen

small. Low control relaxation may then be chosen to quickly alleviate the
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vibration. The eigenvalues of the signal information matrix predict the stability

limits for the diagonal elements of the stability gain matrix only during the

learning phase, when the control signals are known in advance. During the

control phase, the signal information matrix is not known, and the selection of

the stability gain matrix and the amount of control relaxation to be used must

be found experimentally. The simulation results indicated that, in general, the

product of the control relaxation _nd the magnitude of the stability gain matrix

must be kept within limits. Low values of Ks make the controller less sensitive

to control relaxation selection, a_d permits faster and more stable vibration

reduction, than by choosing Ks large and the control relaxation coefficient small.

Given a fixed amount of control relaxation, very low values of Ks make the

inverse identification process smooth, but slow. The best selection of the stability

gain matrix diagonal elements and the amount of control relaxation is basically

a compromise between slow, stable convergence and fast, yet potentially unstable

identification.

The LMS adaptive inverse control algorithm was shown to be capable

of adapting the inverse (controller) matrix to track changes in the flight

conditions. The algorithm converged quickly for moderate disturbances,

while taking longer for larger disturbances. Perfect knowledge of the

inverse matrix was not required for good control of the N/Rev vibra-

tion.

It was shown that measurement noise will prevent the LMS adaptive in-

verse control technique from controlling the vibration, unless the signal averaging

method presented here is incorporated into the algorithm. This technique gives

the LMS algorithm a memory, and greaily improves the robustness of the control

system.

*?
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Wind tunnel or flight testing must now be done to tune the extended LMS

adaptive inverse control technique for un actual application and validate the results

found in simulation.

m = s

4

=T
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